reaction mixture was heated at 90 "C until the ketene had been consumed, **as** evidenced by the disappearance of the ketene band at 2080 cm-' in the infrared spectrum, about 2 h. There was obtained 2.3 g (65%) of the cyclobutanone at 58-62 "C at 0.25 mm by using a short-path distillation apparatus: IR 1770 cm^{-1} $(C=O)$; **NMR** $(CCl₄$ with CHCl₃ as a reference) δ 0.1 (s, 9 H), 2.85 $(s, 1 H)$, 3.3 $(s, 12 H)$; mass spectrum, m/e (relative intensity) parent **peak** 262 (no M found), 247 (17, **M-15),** 189 (68), 127 (711, 95 (loo), 93 (84.3).

Anal. Calcd for $C_{11}H_{22}O_5Si$: C, 50. 38; H, 8.4. Found: C, 49.98; H, 8.66.

(b) **3,4,4-Trimethoxy-2-cyclobutenone** (5a). A 2.3-g (8.7 mmol) portion of the cyclobutanone 3a was heated about 24 h at 95 \degree C to give 1.39 g (80%) of the cyclobutenone 5a at 58-62 **"C** (0.25 mm): IR and NMR data were consistent with the literature;^{6b} mass spectrum, m/e (relative intensity) 158 (3.3, M, parent peak), 143 (100, M - 15), 127 (20, M - 31), 115 (63), 99 (43).

Cycloaddition of (Trimethylsily1)ketene with Tetraethoxyethylene. (a) **3,3,4,4-Tetraethoxy-2-(trimethylsilyl)** cyclobutanone [3b]. This cycloaddition was accomplished by employing the same procedure as described above. From 3.0 g (26 mmol) of the ketene and 5.3 g (26 mmol) of 2b there was obtained 5.6 g (68%) of 3b at 75–80 $^{\circ}$ C (0.15 mm): IR 1770 cm⁻¹ (C= \equiv O); NMR (CCl₄ with CHCl₃ as reference) δ 0.05 (s, 9 H), 1.05 (t, 12 H), 2.80 (s, 1 H), 3.50 **(4,** 8 H); mass spectrum *mle* (relative intensity) parent peak 318 (no M found) , $303 \text{ (3.4, M} - 15)$, 289 (100, M - **29),** 273 (15.3), 245 (6.8), 217 (15.3), 215 (42.4), 187 (39.0), 171 (69.5).

Anal. Calcd for $C_{15}H_{30}O_5Si$: C, 56.60; H, 9.43. Found: C, 56.83; H, 9.38.

(b) **3,4,4-Triethoxy-2-cyclobutenone** (5b). Heating 5.6 g (17.6 mmol) of 3b as described above resulted in the formation of 3.0 g (86%) of 5b at 90–95 °C (0.1 mm) [lit.^{6b} 75 °C (0.02 mm)]; the IR and NMR data were consistent with that reported in the literature; mass spectrum, parent peak at *m/e* 200.

3,4,4-Tri-a **-propoxy-2-cyclobutenone,** 5c. A 2.0-g (17.54 mmol) portion of the ketene was added dropwise to 4.56 g (17.54 mmol) of **tetra-n-propoxyethylene.** When the addition was complete, the reaction mixture was heated at 90-95 "C overnight. There was obtained 2.1 g (50%) of 5c at 90-95 °C (0.1 mm): IR 1770, 1585, 1470, 1340, 1200, 1080 cm⁻¹; NMR δ 1.19 (m, 9 H), 1.3 (m, 6 H), 3.35 (t, **4** H), 3.9 (t, 2 H), 5.15 (s, 1 H); mass spectrum, *m/e* (relative intensity) 242 (1.7 M parent peak), 199 (5.9), 157 (27.1), 115 (100), 103 (9.3), 99 (24.5), 87 (7.6), 69 (93.2)

Anal. Calcd for $C_{13}H_{22}O_4$: C, 64.5; H, 9.1. Found: C, 64.76; H, 9.03.

Conversion of a Mixture **of** 3b and 5b to 5a. A 1.0-g mixture of 3b and 5b in 20 **mL.** of absolute methanol containing a few drops of concentrated HCl was stirred overnight under a nitrogen atmosphere. Upon evaporation of the solvent, the distilled product was only 5a as evidenced by comparison of spectral data.

(c) **3-Hydroxy-3-cyclobutene-l,2-dione, 6.** Semisquaric Acid. To a solution containing 1 g (6.3 mmol) of 5a in 20 mL of THF was added 15 mL of 18% HC1. This solution was stirred for 1 h at 45 "C. All of the liquids were removed under reduced pressure, and the residual solid was purified by sublimation to give 0.62 g (100%) of product: mp 145-150 °C dec (lit.⁶ mp 145-150 "C dec); IR and NMR data were identical with those in the literature.¹⁰

The NMR spectrum of 6 in acetone- d_6 revealed two singlets at 2.1 and 8.7 ppm in a ratio of 1.

Acknowledgment. The authors express appreciation to the Robert A. Welch Foundation and to the North

Texas State University Faculty Research Committee for support of this investigation.

Registry **No. 1,** 4071-85-6; 2a, 1069-12-1; 2b, 40923-93-1; 2c, 40923-94-2; 3a, 72332-21-9; 3b, 72332-22-0; 5a, 68057-55-6; 5b, 68057-58-9; 5~, 72332-23-1; **6,** 31876-38-7.

Thermally Induced Cyclobutyl-Cyclopropylcarbiny 1-Type Rearrangement of 2-0xabicyclo[4.2.0]octan-3-ones

Kiyomi Kakiuchi,* Yoshito Tobe, and Yoshinobu Odaira

Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka **565,** *Japan*

Received August 20, 1979

It has been well-known that cyclobutyl derivatives rearrange to cyclopropylcarbinyl ones through disrotatory
opening of the cyclobutane ring.¹ More recently, the opening of the cyclobutane ring. $¹$ </sup> acid-catalyzed rearrangement of highly constrained polycyclic lactones such as cagelike compounds has been reported.2 However, this type of thermally induced rearrangement is little known as yet. 3 In a continuation of studies on the transformation of readily available [n.3.2]propellanes into other important polycarbocyclic ring systems,⁴ we previously reported the acid-catalyzed **cyclobutyl-cyclopropylcarbinyl-type** rearrangement of **2-oxabicyclo[4.2.0]octan-3-ones 2,8,** and **9** (&lactones) to the corresponding γ -lactones 11, 14, and 15 (Chart I) as a preliminary report.^{4c} We describe here a novel thermally induced rearrangement of the δ -lactones 1–4, 8, and 9 to the γ -lactones 10-15 which may be considered to proceed in a concerted manner.⁵ Interestingly, the obtainable γ -lactones in the present reactions will serve as useful intermediates for the synthesis of polycyclic substrates involving the **spiro-a-methylene-y-butyrolactone** skeleton which have been shown to display antitumor activity. $6,7$

The δ -lactones $1-9$ were prepared by the Baeyer-Villiger oxidation $(H_2O_2/ACOH)$ or MCPBA/CHCl₃) of the corresponding ketones in good yields. The thermal reaction was carried out by heating an o-dichlorobenzene solution of &lactones in a sealed tube at **240** "C for 72 h or passing a hexane solution of **1-9** through a Pyrex column heated at 350 "C (contact time ca. **20** 9). The results are summarized in Table I along with those under the acidic conditions.

Semisquaric acid was also obtained from 5b **as** described above for 5a.

Typical Procedure for the Reaction of (Trimethylsily1) ketene with Tetraalkoxyethylene at Room Temperature. A 1.0-g (8.7 mmol) portion of (trimethylsily1)ketene was added dropwise to a solution of 1.29 g (8.7 mmol) of 2a under a nitrogen atmosphere and stirred at room temperature for 3-5 days, depending on the tetraalkoxyethylene.

⁽¹⁰⁾ Scharf, H. D.; Frauenrath, H.; Pinske, W. *Chem. Ber.* 1978,111, 168.

⁽¹⁾ Olah, G. A.; Schleyer, P. v. R. "Carbonium Ions"; Wiley-Intersci-ence: New York, 1972; Vol. 111, Chapter 26.

^{(2) (}a) Büchi, G.; Goldman, I. M. J. Am. Chem. Soc. 1957, 79, 4741.
(b) Hirao, K.; Miura, H.; Hoshino, H.; Yonemitsu, O. Tetrahedron Lett.
1976, 3895. (c) Mehta, G.; Singh, V.; Duddeck, H. Ibid. 1978, 1223.
(3) Only one e

[&]quot;Abstracts of Papers", 37th Annual Meeting of the Chemical Society of

Japan, Yokohama, Apr 1-4, 1978; Vol. 2, p 633. **(4)** (a) Tobe, Y.; Kimura, K.; Odaira, Y. *J.* **Og.** Chem. 1979,44,639.

⁽b) Tobe, Y.; Doi, A.; Kimura, K.; Odaira, Y. Bull. Chem. Soc. Jpn. 1979, 52, 639. (c) Tobe, Y.; Kakiuchi, K.; Kawakami, Y.; Sakai, Y.; Kimura, K.; Odaira, Y. Chem. Lett. 1978, 1027. (d) Sakai, Y.; Toyotani, S.; Tobe, K.; Y.; Odaira, Y. *Tetrahedron* Lett., 1979, 3855.

⁽⁵⁾ A concerted mechanism for this type of rearrangement **has** likewise been proposed for some highly strained compounds. References 2a and
3. McDonald, R. N.; Davis, G. E. *J. Org. Chem.* 1969, 34, 1916.
(6) (a) Rodriquez, E.; Towers, G. H. N.; Mitchell, J. C. *Phytochemistry*

^{1976, 15, 1573.} **(b)** Grieco, P. A.; Noguez, J. A.; Masaki, Y.; Hiroi, K.; Nishizawa, M.; Rosowsky, A.; Oppenheim, S.; Lazarus, H. *J. Med.* Chem. 1977, *20,* 71.

⁽⁷⁾ For an example, we have prepared an α -methylene γ -lactone from 11 by the usual method,^{6b} and its biological activity is now under investigation.

Table I. Thermally Induced **Cyclobutyl-Cyclopropylcarbinyl-Type** Rearrangement of *6* -Lactones 1-9

^aYields were almost quantitative unless otherwise noted. Heated at **240 "C** for **72** h in o-dichlorobenzene solution. Heated at 350 °C for ca. 20 s under nitrogen. d Heated at reflux in acetic acid for 7 **2** h. See ref 4c. **e** Small amounts of unidentified products were obtained.

In the case of the bicyclic system, unsubstituted and monomethyl-substituted b-lactones **5-7** were recovered unchanged, whereas the dimethyl- and ethylmethyl-substituted ones 8 and **9** gave 16-49% of the corresponding γ -lactones, 14 and 15. With the tricyclic system, the δ lactone 2 rearranged readily to afford 79–85% of 11. These results exhibited a trend similar to that observed in the acid-catalyzed reaction, as shown in Table I. However, it is noteworthy that the thermal rearrangement of **1,3,** and **4** took place to afford the desirable γ -lactones 10, 12, and **14,** respectively, though the rearrangement did not occur at all under the acidic conditions. Moreover, in order to examine the possibility of reverse rearrangement of γ lactones to δ -lactones, we heated an o -dichlorobenzene solution of some γ -lactones, such as 11 and 14, at 240 °C. Significantly, the reverse rearrangement proceeded gradually with the lapse of time, and finally the quantities of both lactones achieved **a state** of equilibrium. Namely, the ratio of **2** to **11** and that of 8 to **14** were in the ratios of $15:85$ and $56:44$ after about 12 and 250 h, respectively.^{8,9} The above fact infers that the present cyclobutyl-cyclo-

propylcarbinyl-type rearrangement may proceed by a concerted mechanism rather than by a stepwise cationic one.

The distinction of reactivity for the rearrangement in a series of the δ -lactones may be attributed to the steric effect of the substituents on the conformation of cyclobutane ring of δ -lactones. Namely, inspection of molecular models of δ -lactones indicates clearly that the cyclobutane ring of dialkyl-substituted δ -lactones has a more puckered geometry compared with that of unsubstituted and monoalkyl-substituted ones, owing to 1,2-dialkyl interaction of the substituents. Such a geometry of the cyclobutane ring may permit an antiperiplanar arrangement of the two migrating bonds (C-1, 0-2 and **C-6, C-7** bonds) which is desirable for concerted rearrangement to γ -lactones. This is the case especially in **2** because of the steric requirement of the cyclohexane ring fused to the bridgehead positions

As an extention of the present, the possibility of the for the tricyclic elactone **16.** Interestingly, the rear-

rangement of **16** proceeded more readily to lead to the formation of the corresponding δ -lactone 17 even under silica gel column chromatography or under **GLC** conditions (10% **FFAP** on Uniport **B,** 180 "C).

Experimental Section

Melting **points** are uncorrected. Infrared spectra were recorded by using a JASCO IR-G spectrometer and liquid films unless otherwise stated. 'H NMR spectra were obtained on a JEOL JNM-PS-100 spectrometer, using Me₄Si as an internal standard and CCl₄ as a solvent. Mass spectra were measured with a Hitachi RMU-6E spectrometer. Analytical GLC was carried out on a Hitachi 163 gas chromatograph, and preparative GLC separation was conducted on a Varian Aerograph 90-P or a Varian Aerograph 920 gas chromatograph.

Tricyclic ketones and **1,5-dimethylbicyclo[3.2.0]** heptan-2-one were prepared as previously described.⁴⁶ Bicyclo[3.2.0]heptan-
2-one¹⁰ and the 1-methyl-,¹¹ 5-methyl-,¹¹ and 1-ethyl-5-methylsubstituted derivatives were prepared in 30-71% yields by photocycloaddition of the corresponding cyclopentenones to ethylene in a similar manner to that above. 1-Ethyl-5-methyl**bicyclo[3.2.0]heptan-2-one:** IR 1710 cm-'; NMR 6 0.75 (t, 3 H), 1.22 (s, 3 H), 1.40-2.80 (m, 10 H); MS *m/e* 152 (M+); semicarbazone, mp 198-199.5 °C. Anal. Calcd for $C_{11}H_{19}ON_3$: C, 63.12; H, 9.15; N, 20.08. Found: C, 62.86; H, 9.15; N, 20.14. Cyclopentenone¹² and its 2-methyl-¹¹ and 3-methyl-substituted¹³ derivatives were prepared according to the literature procedures, and the 2-ethyl-3-methyl derivative was prepared by a method similar to that for the 2,3-dimethyl one.¹⁴ 2-Ethyl-3-methylcyclopentenone: IR 1680, 1640 cm-'; NMR *8* 0.90 (t, 3 H),

⁽⁸⁾ Thermolysis **of** the b-lactones **2** and 8 under similar conditions gave the same results.
(9) In addition, when an acetic acid solution of the γ -lactone 11 was

⁽⁹⁾ In addition, when an acetic acid solution **of** the y-lactone **¹¹**was refluxed, the equilibrium mixture **of** both lactones **was also** obtained **(2/11** ratio **of 14:86) after** about **72** h.

⁽¹⁰⁾ Cantrell, T. **S.;** Solomon, J. S. J. *Am. Chem.* **SOC. 1970,92, 4656. (11)** Gassman, P. G.; Pascone, J. M. J. *Am. Chem. SOC.* **1973,95,7801.**

⁽¹²⁾ Teribs, **W.;** Franke, G.; Leichsenring, G.; Roder, H. *Ber. Dtsh.*

Chem. Ges. **1953,86, 616.**

⁽¹³⁾ Acheson, R. **M.;** Robinson, R. J. *Chem.* **SOC. 1952, 1127. (14)** Varech, **D.;** Ouannes, C.; Jacques, J. *Bull. SOC. Chim. Fr.* **1965, 1162.**

2.00-2.50 (m, 9 H); MS m/e 124 (M⁺); semicarbazone, mp 216-217 °C. Anal. Calcd for $C_9H_{15}ON_3$: C, 59.64; H, 8.34; N, 23.19. Found: C, 59.65; H, 8.30; N, 23.17.

Preparation of &Lactones. &Lactones **1-9** were prepared by the Baeyer-Villiger oxidation of the corresponding ketones in two methods.

Procedure A. A solution of the ketone and a 20-fold excess of 30% aqueous hydrogen peroxide in acetic acid was stirred at room temperature, and the progress of the reaction was monitored by GLC. The solution **was** poured into water and extracted with ether, and the ether extract was washed with saturated sodium carbonate solution and brine and dried $(Na₂SO₄)$. The solvent was removed in vacuo, and the residue was distilled under reduced pressure. &Lactones **1-9** were obtained in 35-80% yields and purified by preparative GLC.15

Procedure B. A solution of the ketone and a 2.5-fold excess of 85% m-chloroperbenzoic acid (MCPBA) in chloroform was stirred at room temperature. The solution was washed with saturated sodium sulfite solution and water and dried (Na_2SO_4) . The products were isolated as described above (40-90%).

1: IR 1720 cm-'; NMR **6** 1.30-2.20 (m, 12 H), 2.30-2.50 (m, 2 H ; MS m/e 166 (M⁺), 138. Anal. Calcd for $\text{C}_{10}\text{H}_1\text{A}\text{O}_2$: C, 72.26; H, 8.49. Found: C, 71.90; H, 8.78.

2: IR 1720 cm-'; NMR **6** 1.00-2.15 (m, 14 H), 2.20-2.50 (m, 2 H); MS m/e 180 (M⁺), 152. Anal. Calcd for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.11; H, 9.13.

3: mp 34-36 "C; IR (KBr) 1720 cm-'; NMR **6** 1.20-2.20 (m, 16 H), 2.50-2.70 (m, 2 H); MS *m/e* 194 (M'), 166. Anal. Calcd for $C_{12}H_{18}O_2$: C, 74.19; H, 9.34. Found: C, 73.92; H, 9.44.

4: IR 1720 cm-'; NMR **6** 1.00-2.20 (m, 18 H), 2.50-2.70 (m, 2 H); MS m/e 208 (M⁺), 180. Anal. Calcd for C₁₃H₂₀O₂: C, 74.96; H, 9.68. Found: C, 74.70; H, 9.74.

5: IR 1720 cm-'; NMR **6** 1.50-2.80 (m, 9 H), 4.76 (q, 1 H); MS *m/e* 126 (M'), 98.

6: IR 1720 cm-'; NMR **6** 1.40 (s, 3 H), 1.40-2.50 (m, 9 H); MS m/e 141 (M⁺ + 1), 43. Anal. Calcd for C₈H₁₂O₂: C, 68.54; H, 8.63. Found: C, 68.31; H, 8.72.

7: IR 1720 cm-': NMR 6 1.24 **(s.** 3 H). 1.40-2.60 (m. 8 H). 4.32 $(q, 1 H)$; MS m/e 141 $(M^+ + 1)$, 99. Anal. Calcd for $C_8H_{12}O_2$: C, 68.54; H, 8.63. Found: C, 68.22; H, 8.77.

8: IR 1720 cm-'; NMR **6** 0.96 (s, 3 H), 1.14 **(s,** 3 H), 1.40-2.70 (m, 8 H); MS m/e 155 (M⁺ + 1), 126. Anal. Calcd for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 70.05; H, 9.25.

9: IR 1720 crn-'; NMR **6** 0.99 (t, **3** H), 1.12 (s, 3 H), 1.50-2.50 $(m, 10 \text{ H}); \text{MS } m/e$ 169 $(M^+ + 1), 140.$ Anal. Calcd for $C_{10}H_{16}O_2$ C, 71.39; H, 9.59. Found: C, 71.06; H, 9.98.

Thermal Rearrangement of &Lactones 1-9. (a) In Solution. A solution of the δ -lactone in o -dichlorobenzene was heated in a **sealed** tube at 240 "C for 72 h. After evaporation of the solvent in vacuo, the residue **was** analyzed by GLC (10% FFAP), and the γ -lactones were separated by column chromatography (SiO₂, 10%) ether-petroleum ether) and purified by preparative GLC. The results are summarized in Table I.

(b) In the Vapor Phase. A hexane solution of the δ -lactone **was** passed through a Pyrex column (80 cm) heated at **350** "C in nitrogen stream (contact time ca. 20 s) and collected in a dry ice-acetone trap. Similar workup as above gave a mixture of 6 and γ -lactones. The results are summarized in Table I.

10: IR 1765 cm-'; NMR **6** 0.10-0.90 (m, 4 H), 1.40-2.20 (m, 8 H), 2.20-2.50 (m, 2 H); MS m/e 166 (M⁺), 111. Anal. Calcd for $C_{10}H_{14}O_2$: C, 72.26; H, 8.49. Found: C, 71.88; H, 8.56.

11: mp 32-34 "C; IR 1765 cm-'; NMR 6 0.15-1.00 (m, **4** H), 1.2@-2.20 (m, 10 H), 2.30-2.50 (m, 2 H); MS m/e 180 (M'). Anal. Calcd for $C_{11}H_{16}O_2$: C, 73.30; H, 8.95. Found: C, 72.98; H, 9.03.

12: IR 1765 cm-'; NMR **6 0.10-1.00** (m, 4 H), 1.10-2.20 (m, 12 H), 2.30-2.60 (m, 2 H); MS *m/e* 194 (M'), 166. Anal. Calcd for C₁₂H₁₈O₂: C, 74.19; H, 9.34. Found: C, 74.33; H, 9.59.

13: IR 1765 cm-'; NMR **6** 0.10-1.10 (m, 4 H), 1.10-2.20 (m, 14 H), 2.30-2.60 (m, 2 H); MS *m/e* 208 (M'), **180.** Anal. Calcd for $C_{13}H_{20}O_2$: C, 74.96; H. 9.68. Found: C, 75.13; H, 9.56.

14: IR 1765 cm-'; NMR 6 0.49 (m, 2 H), 0.67 (t, 2 H), 1.10 (s, 3 H), 1.40 (s, 3 H), 1.80-2.60 (m, 4 H); MS m/e 155 (M⁺ + 1). Anal. Calcd for $C_9H_{14}O_2$: C, 70.10; H, 9.15. Found: C, 69.87; H, 9.27.

15: IR 1765 cm-l; NMR 6 0.25-0.68 (m, 4 H), 0.80 (t, 3 H), 1.40 (s, 3 H), 1.50 (9, 2 H), 1.80-2.60 (m, 4 H); MS *m/e* 169 (M+ + 1). Anal. Calcd for $C_{10}H_{16}O_2$: C, 71.39; H, 9.59. Found: C, 71.13; H 9.69

Registry No. 1, 68157-80-2; **2,** 68157-81-3; **3,** 68157-82-4; 4, 68157-83-5; **5,** 71221-74-4; 6,72331-80-7; 7,72331-81-8; 8,72331-82-9; **9,** 72331-83-0; **10,** 72331-84-1; 11, 68197-38-6; **12,** 72331-85-2; **13,** 72331-86-3; 14, 68157-84-6; **15,** 68157-85-7; **tetrahydro-3a,6a-ethano**lH,4H-pentalen-l-one, 5202-23-3; **hexahydro-3a,7a-ethano-lH**inden-1-one, 42540-17-0; **hexahydro-3a,8a-ethano-1H,4H-azulen-l**one, 70386-90-2; **octahydro-3a,9a-ethano-1H-cyclopentacyclooctan-**1-one, 70386-91-3; **bicyclo[3.2.0]heptan-2-one,** 29268-42-6; 1 **methylbicyclo[3.2.0]heptan-2-one,** 50459-43-3; 5-methylbicyclo- [3.2.01 heptan-2-one, 50459-35-3; **1,5-dimethylbicyclo[3.2.0]** heptan-2 one, 70386-92-4; **l-ethyl-5-methylbicyclo[3.2.0]heptan-2-one,** 72331- 87-4; **l-ethyl-5-methylbicyclo[3.2.0]heptan-2-one** semicarbazone, 72331-88-5; **2-ethyl-3-methylcyclopentenone,** 5682-72-4; 2-ethyl-3 methylcyclopentenone semicarbazone, 72331-89-6.

Alkaline Hydrolysis of 7,8-Dimethyl-l0-(formylmethyl)isoalloxazine. A Kinetic Study

Iqbal Ahmad and H. David C. Rapson

Department of Pharmacy, Chelsea College, University of London, London, England

Paul F. Heelis*' and Glyn 0. Phillips

School of Natural Sciences, North E. Wales Institute, Kelsterton College, Connah's Quay, Deeside, Clwyd, United Kingdom

Received October 23, 1979

7,8-Dimethyl-lO-(formylmethyl)isoalloxazine (1) is an important intermediate product in the photolysis of riboflavin $(2).²$ Marked changes in the distribution of Marked changes in the distribution of lumichrome **(3)** and lumiflavin **(4),** both major products of the photolysis of **2,** are known to occur in moving from neutral to alkaline media.3 **A** possible explanation lies in the alkaline hydrolysis of 1, formed initially in the photolysis of **2. A** previous study of the side-chain hydrolysis of 1 in the dark reported that 4 was the major product.⁴

In the present study, we report kinetic data on the dark hydrolysis of 1 in the pH range 9-12. It is shown that both **3** and **4** are major products and that their relative proportions are pH dependent.

Results and Discussion

The hydrolysis of 1^5 (10^{-4} M) was carried out in unbuffered solutions at various pH values at 25 ± 1 °C (pH

-
- (1) To whom correspondence should be addressed.

(2) E. C. Smith and D. E. Metzler, J. Am. Chem. Soc., 85, 3285 (1963).

(3) O. Warburg and W. Christian, *Naturwissenschaften*, 20, 980

(1932); P. Karrer, H. Solomon, K. S

(5) 1 was prepared **as** described previously by H. H. Fall and H. G. Petering, *J. Am. Chem. Soc.,* 78, 377 (1956).

⁽¹⁵⁾ In the cases of 2, 8, and 9, 10% of 11 and traces of 14 and 15 were also obtained, besides the respective δ -lactones. These may be derived from initially formed δ -lactones by the rearrangement.

Helu. Chim. Acta, 17, 1010 (1934). (4) **P. S.** Song, E. C. Smith, and D. E. Metzler, *J. Am. Chem. Soc.,* 87, 4181 (1965).